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Abstract

The equation −ε2∆u + F (V (x), u) = 0 is considered in Rn. It is assumed that V
possesses a set of critical points B for which the values of V and D2V satisfy certain
compactness and uniformity properties. Under appropriate conditions on F the problem
is then shown to possess for each b ∈ B and small ε > 0 a solution that concentrates at
b and has detailed uniformity and decay properties. This implies by results of a previous
paper that there exist solutions that concentrate at arbitrary subsets of B as ε → 0.
This includes cases when B is infinite and V non-periodic, instances of which are briefly
explored.

1 Introduction

This is the second of two papers on infinite-bump solutions of non-linear Schrödinger-like
equations. In a previous paper [4] the authors studied the problem

−ε2∆u+ F (V (x), u) = 0, x ∈ Rn

on the assumption that the function V (x) (the potential function so-called) had a collec-
tion B, which could be infinite, of non-degenerate critical points. For each critical point
b ∈ B a solution was assumed to exist for small ε, a so-called single-bump solution, that
concentrated at the point b as ε → 0. This solution was assumed to possess an explicit
asymptotic structure as ε → 0 together with regularity and decay properties that were
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uniform with respect to ε and b ∈ B. With these conditions it was shown that for ar-
bitrary B0 ⊂ B there exists a solution U , in general in the Hölder space C2,λ(Rn), that
concentrates at the set B0 as ε→ 0.

The construction of examples exhibiting infinitely many critical points, with corre-
sponding single bump solutions that satisfy the uniform regularity and decay properties
needed to apply these results, is a major problem, and is the main object of this paper. In
the previous paper [4], not having presented this construction, we gave a relatively simple
illustration of the main theorem in which the potential function was periodic; in fact we
restricted ourselves to the case

−ε2u′′ + V (x)u− u3 = 0, x ∈ R

where V (x) is a periodic potential. We then took B as a set of translates of one critical
point and used results from [2] for the single bump solution. The uniformity conditions
needed to obtain multibump solutions were then trivial consequences of periodicity and
the regularity and decay properties for a single solution easy to establish in the context
of an ordinary differential equation.

In this paper we derive the uniformity conditions for an infinite collection of single
bump solutions using rather simple assumptions that go far beyond the periodic case and
allow a much wider range of examples. In effect we revisit the method used in [2] to con-
struct single bump solutions and coerce it into producing uniformity results. We establish
that if V has bounded derivatives up to order 3, the crucial property of the set B is that
the Hesse matrices D2V (b) for b ∈ B are uniformly invertible. The uniformity conditions
are then satisfied and we obtain infinite-bump solutions concentrating at arbitrary subsets
of B0 using the glueing-together procedure of [4], although this does seem to require V
to have additional bounded derivatives up to order 2 + n/2. The only real restriction on
the construction of examples is then the existence of the ground state as explained in the
next section.

In the last section we give some instances based on elementary calculations of non-
periodic functions V (x) where the set B is infinite and satisfies our conditions.

As usual we make the change of variable x = εy so that we shall, from now on, only
consider the problem in the form

−∆u+ F (V (εx), u) = 0, x ∈ Rn.

2 Assumptions

In this section we collect the main assumptions that underlie the existence of the single-
bump solutions. These are similar to those of [2] and will ensure the existence of single-
bump solutions with uniform properties in H2. We shall then have to work to establish
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uniform properties in the Hölder spaces. To avoid unnecessary difficulties we shall assume
that F is C∞. This saves painstaking counting of derivatives. Local differentiabilty of
solutions is then not a problem and we can concentrate our efforts on proving global
bounds for derivatives and Hölder seminorms.

A note on the function spaces and notation. Generally we consider functions over the
whole of Rn. Thus the notations Hk, Lp, Ck, Ck,λ denote the usual function spaces of
functions in Rn with finite Sobolev or Hölder norms as appropriate. Occasionally we shall
need spaces of functions on a closed ball K and use a notation such as Ck(K). Sequences
of functions will often be indexed by ν, which runs through the positive integers (“n” is
reserved for the dimension of Rn). Local convergence is sometimes used; for example we
say fν → f in Ckloc when fν → f in the space Ck(B(0, r)) for every r > 0.

Properties of F

We assume that F is a C∞ function of (a, u) ∈ I × R, where I ⊂ R is an open interval.
We impose growth conditions:

(F1) |F (a, u)|,
∣∣∣∣∂F∂a (a, u)

∣∣∣∣ , ∣∣∣∣∂2F

∂a2

(
a, u
)∣∣∣∣ ≤ C(|u|+ |u|α1),∣∣∣∣∂F∂u (a, u)

∣∣∣∣ , ∣∣∣∣ ∂2F

∂u∂a

(
a, u
)∣∣∣∣ ≤ C(1 + |u|α2),∣∣∣∣∂2F

∂u2

(
a, u
)∣∣∣∣ ≤ C(1 + |u|α3),

where the constant C can be chosen uniformly for a in a bounded interval and the expo-
nents are non-negative and satisfy αk ≥ 2− k.

These are called standard growth conditions if, in addition, 1 ≤ n ≤ 7, with no upper
limit placed on α1, α2, α3 if n ≤ 4, whereas for n = 5, 6, 7 we assume

α1 <
n

n− 4
, α2 ≤

4
n− 4

, α3 <
8− n
n− 4

.

Under these conditions the Nemitskii operators defined by the partial derivatives F , ∂F
∂a ,

∂2F
∂a2 , ∂F

∂u , ∂2F
∂u∂a and ∂2F

∂u2 , enjoy some important boundedness and convergence properties
from L∞ ×H2 to L2. These are given in [2] pages 588–592.

Properties of V

(V1) V is C∞ with range in the interval I.

(V2) DαV is bounded for |α| ≤ 3.
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Positivity property

(P1) There exists δ > 0 such that
∂F

∂u

(
a, 0
)
> δ for all a ∈ I.

The ground state

For each a ∈ I we assume the existence of a privileged non-trivial solution φa in H2, the
ground state, to the equation −∆u+ F (a, u) = 0. This has the following properties.

(Φ1) φa(x) = Φa(|x|) is spherically symmetric.

(Φ2) The map I 3 a 7→ φa is continuous from I to H2.

(Φ3) The operator −4+ ∂F
∂u (a, φa(x)) : H2 → L2 has as kernel the space spanned by the

n partial derivatives Djφa(x), (which are automatically independent by radiality of φa),
and its range is the space orthogonal in L2 to its kernel. This property is referred to as
quasi-non-degeneracy.

(Φ4)
∫
∂F

∂a

(
a,Φa(|x|)

)
Φ′a(|x|)|x| dx 6= 0.

There is an alternative to (Φ4) which is rather appealing; namely that the derivative Daφ
lies in H2 and that (d/da)

∫
|∇φa(x)|2 dx 6= 0. That this implies (Φ4) was shown in [3]

and results from the equality∫
∂F

∂a

(
a,Φa(|x|)

)
Φ′a(|x|)|x| dx = − d

da

(∫
|∇φa|2 dx

)
(1)

3 Properties of the ground state

In this section we deduce some regularity and decay properties of φa, some of which will
be needed for the construction of single bump solutions with uniform properties, while
others are interesting in their own right.

Throughout this section, we shall assume without further explicit mention that F (a, u),
V and φa satisfy all the assumptions set out in section 2.

We will repeatedly need a global version of the elliptic regularity theorem.

Theorem 1. Let 0 < λ < 1, let g be a bounded measurable function on Rn, and let u be
a bounded measurable function that satisfies

∆u = g

in the sense of distributions. Then u belongs to C1,λ(Rn) and satisfies

||u||C1,λ ≤ C(||g||L∞ + ||u||L∞)
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where the constant C depends only on n and λ. If, in addition, g belongs to Cλ(Rn) then
u ∈ C2,λ(Rn) and we have an estimate

||u||C2,λ ≤ C(||g||Cλ + ||u||L∞).

Sometimes we shall claim a result “by interpolation”. This means use of the following
inequality.

Theorem 2. Let Ω be either the whole of Rn or the complement of a closed ball. Let
u ∈ C2(Ω). Then

‖Du‖L∞(Ω) ≤ 2‖u‖
1
2

L∞(Ω)‖D
2u‖

1
2

L∞(Ω).

The main regularity results are as follows.

Theorem 3. Let W (x) be a C∞ function with W ∈ Ck(Rn) and such that its range lies
in a compact subset of the interval I. Let v be a solution in H2 of

−∆v + F (W (x), v) = 0

Then v ∈ Ck+1,λ(Rn), for all 0 < λ < 1 and decays at infinity. Moreover there exists a
polynomial Z(α, β, γ), with coefficients depending only on n, k and λ, such that

||v||Ck+1,λ ≤ Z
(
||F ||Ck(K), ||W ||Ck , ||v||H2

)
||v||H2 ,

where K = {(a, u) : |a| ≤ ||W ||C0 , |u| ≤ C0||v||H2} and the constant C0 depends only on
n and the constants in the growth condition on F (a, u).

Proof. First assume that n > 4 (so that n = 5, 6 or 7). By the growth conditions, the
Calderon-Zygmund estimate and the Sobolev embedding we find that if v ∈W 2,r(Rn) for
some r in the range 2 ≤ r < n/2 then v ∈ W 2,nr/α1(n−2r)(Rn). Since v ∈ W 2,2(Rn) we
find after a finite number of steps that v ∈W 2,s for some s ≥ n/2. In the cases 1 ≤ n ≤ 4
this is already known. If s > n/2 the Sobolev embedding gives that v is continuous, tends
to 0 at infinity and satisfies ||v||L∞ ≤ C0||v||H2 where C0 depends only on n and the
constants in the growth condition on F (a, u). If s = n/2 then certainly v ∈ Lq for all
q ≥ 2 by the Sobolev embedding, and by the equation we find also v ∈W 2,q. Hence again
v is continuous, decaying at infinity and satisfies ||v||L∞ ≤ C0||v||H2 .

Now we note that v is a bounded solution, u = v of

−∆u+ u = v − F (W (x), v) (2)

and the right-hand side is bounded. Hence v ∈ C1,λ by theorem 1. By (2), if v ∈ Cj,λ and
j ≤ k − 1 then the right-hand side is in Cj,λ (since W has enough bounded derivatives
to guarantee this) and we deduce that v ∈ Cj+2,λ. Starting with v ∈ C1,λ we end up at

6



v ∈ Ck+1,λ. By induction ||v||Ck+1,λ is bounded by a polynomial, of the required form, in
the quantities ||F ||Ck(K0), ||W ||Ck and ||v||L∞ , where K0 = {(a, u) : |a| ≤ ||W ||C0 , |u| ≤
||v||L∞} and the coefficients of the polynomial depend only on n, k and λ. We use the
inequality ||v||L∞ ≤ C0||v||H2 to replace K0 by K and complete the proof.

In a series of lemmas and theorems we study the local and global regularity of the
functions φa, the map a 7→ φa with various topologies on the codomain (recall assumption
(Φ2) according to which it is continuous to H2) and the quasi-non-degeneracy of φa in
Hölder spaces.

Theorem 4. The ground state φa is C∞. Its derivatives of all orders are bounded on Rn

and decay exponentially at infinity. Moreover the rate of exponential decay is uniform in
the following sense: if A is a compact subset of I and α a multi-index there exist C > 0
and µ > 0 such that |Dαφa(x)| ≤ Ce−µ|x| for all x ∈ Rn and a ∈ A.

Proof. Here we take W as the constant function a. We therefore have a uniform bound
on ||W ||Ck = |a| for a ∈ A, where A ⊂ I is compact. Since, by assumption (Φ2), the map
a 7→ φa : I → H2 is continuous, we have a uniform bound on ||φa||H2 for a ∈ A. Hence
by theorem 1 every derivative of φa is bounded, with a bound independent of a ∈ A, and
φa decays at infinity.

We can show that the decay of φa(x) to 0 as |x| → ∞ is uniform with respect to
a ∈ A. Suppose that the decay of φa is not uniform with respect to a. Then we can find
r > 0 and sequences aν ∈ A and xν ∈ Rn such that |xν | → ∞ and |φaν (xν)| > r. Since
Dφa has a uniform bound independent of a we can find δ > 0 such that |φaν (y)| > r/2
for |y − xν | < δ. Then

∫
|y−xν |<δ |φaν (y)|2 dy > (r2/4)vol (B(0, δ)). However the set of

functions φa, a ∈ A, is compact in L2 by assumption (Φ2). So the integral
∫
|x|>R |φa|

2 dx
converges to 0 as R→∞, uniformly for a ∈ A. This gives a contradiction since it implies
that

∫
|y−xν |<δ |φaν (y)|2 dy tends to 0 as ν →∞.

Let G(a, u) = F (a, u)/u. Then lim inf |x|→∞G(a, φa(x)) ≥ δ > 0 (where δ was defined
in assumption (P1)), and what is more there exists R > 0 such that for |x| > R and
all a ∈ A we have G(a, φa(x)) ≥ δ/2 > 0. It follows by [5] that there exist C > 0 and
µ > 0 such that |φa(x)| ≤ Ce−µ|x| for all x ∈ Rn and a ∈ A. By interpolation a similar
estimate holds for each derivative Dαφa (but the constant C and exponent µ may depend
on α).

Theorem 5. Let 0 < λ < 1. The kernel of the operator

Aa := −∆ +
∂F

∂u

(
a, φa

)
: C2,λ → C0,λ

is spanned by the partial derivatives Djφa, j = 1, . . . , n and its range is the orthogonal
L2-complement in C0,λ of its kernel. The same result applies to the operator acting from
Ck+2,λ to Ck,λ for k = 1, 2,....
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Proof. The proof is in three steps.
(A) Identification of the kernel of Aa.
Let v ∈ C2,λ be in the kernel of Aa. Then

−∆v +
∂F

∂u
(a, 0)v +

(
∂F

∂u
(a, φa)−

∂F

∂u
(a, 0)

)
v = 0.

Since φa decays exponentially, and since

∂F

∂u
(a, φa)−

∂F

∂u
(a, 0) = φa

∫ 1

0

∂2F

∂u2
(a, tφa) dt

and v is bounded we have that(
∂F

∂u
(a, φa)−

∂F

∂u
(a, 0)

)
v

belongs to L2. Thus we have both that v is bounded and (−∆ + m)v ∈ L2 where
m = ∂F

∂u (a, 0) > 0. We deduce that v ∈ H2. But now (φ3) implies that v is in the space
spanned by the partial derivatives Djφa.

(B) Aa is a Fredholm operator of index 0. Aa is a compact perturbation of the operator
−∆ + ∂F

∂u

(
a, 0
)

: C2,λ → C0,λ and the latter is invertible and surjective in view of the
condition ∂F

∂u

(
a, 0
)
> δ > 0. (This is a place where Hölder spaces must be used; the last

claim is untrue without the Hölder exponent.)
(C) Identification of the range of Aa. It is straightforward to check that Aau is ortho-

gonal to Djφa. By Fredholmness the range is exactly its L2-orthogonal complement in
C0,λ.

Theorem 6. The map a 7→ φa is continuous from I to Ck and from I to Hk for all
integers k ≥ 0.

Proof. We first consider the map from I to C0. We first remark that if A ⊂ I is compact
we have a uniform bound on Dφa(x) independent of a ∈ A; hence the family φa, a ∈ A,
is uniformly equicontinuous. Now let aν → a. We must show that φaν → φa uniformly
in Rn. If this is not the case then, going to a subsequence if necessary, we can find
a sequence xν ∈ Rn such that |φaν (xν) − φa(xν)| > α where α > 0. Moreover since
φaν → φa in L2 we may suppose that φaν → φa a.e. Then by equicontinuity we must
have φaν → φa pointwise (if not then the set of points at which φaν does not converge to
φa is open). Suppose first that xν is bounded. Then we may assume that it converges
to x say. Using equicontinuity (the above remark with A = {aν} ∪ {a}), we have that
φaν (xν)− φaν (x)→ 0, φa(xν)− φa(x)→ 0 and φaν (x)− φa(x)→ 0. This contradicts the
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inequality |φaν (xν)−φa(xν)| > α. If, on the other hand, xν is unbounded we may assume
that |xν | → ∞. But this contradicts the uniform decay of φa at infinity.

Now it follows by interpolation that a 7→ φa is continuous from I to Ck(Rn).
Finally we study the map a 7→ φa from I to Hk. Let α be a multi-index. We must

show that
lim
ν→∞

∫
|Dαφa(x)−Dαφaν (x)|2 dx = 0

if aν → a. This follows from uniform exponential decay of the derivatives of φa, pointwise
convergence to 0 of the integrand and the dominated convergence theorem.

It is convenient here to present some preliminary lemmas needed for the construction
of single bump solutions with uniform properties. Let T be an n × n matrix. Then the
function ∂F

∂a

(
a, φa

)
Tx · x is orthogonal to the partial derivatives Djφa by radiality and

belongs to L2 by exponential decay of φa. Hence the equation

−∆v +
∂F

∂u

(
a, φa

)
v =

∂F

∂a

(
a, φa

)
Tx · x

has a unique solution in H2. In particular for each b ∈ Rn we may define ηb as the unique
solution in H2 orthogonal to the partial derivatives Djφa of the equation

−∆v +
∂F

∂u
(V (b), φV (b))v = −1

2
∂F

∂a
(V (b), φV (b))D

2V (b)x · x. (3)

The next two propositions establish some uniform properties of the family ηb.

Theorem 7. Let χaij be the unique solution in H2, orthogonal in the L2-sense to the
partial derivatives Djφa, of the equation

−∆v +
∂F

∂u

(
a, φa

)
v = −1

2
∂F

∂a

(
a, φa

)
xixj

Then the map a 7→ χaij is continuous from I to H2.

Proof. Firstly let Aa : H2 → L2 be the operator −∆ + ∂F
∂u

(
a, φa

)
. By theorem 6, in

particular the continuity of a 7→ φa in the C0 topology, the map a 7→ Aa is continuous in
the operator-norm topology.

Let P aj ∈ (L2)∗ be the linear functional P aj v =
∫
vDjφa dx. By the continuity of

a 7→ Djφa from I to L2 as proved above, the map a 7→ P aj is continuous in the norm
topology.

The map a 7→ 1
2
∂F
∂a

(
a, φa

)
xixj is continuous in the L2-topology, by uniform exponential

decay of φa and the growth conditions (F1).
Define the linear map Na from H2 ⊕ Rn to L2 ⊕ Rn

Na(v, s) = (Aav +∇φa · s, (P aj v)nj=1)
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By the properties of Aa the map Na is invertible and depends continuously on a in the
operator-norm topology. Hence the inverse N−1

a also depends continuously on a. But χaij
is determined by the operator equation

Na(χaij , 0) =
(
− 1

2
∂F

∂a

(
a, φa

)
xixj , 0

)
or equivalently χaij is the first coordinate of

N−1
a

(
− 1

2
∂F

∂a

(
a, φa

)
xixj , 0

)
.

Hence the map a 7→ χaij is continuous in the H2-topology.

Lemma 8. Let B ⊂ Rn be such that the set V (B) has compact closure in I. Then the
set of functions {ηb : b ∈ B}, is relatively compact in H2 and is a bounded family in Ck

for every k.

Proof. The first part follows by writing

ηb =
∑
ij

χ
V (b)
ij DijV (b)

whence we deduce by assumption (V 2), condition (1) of theorem 11 and theorem 7 that
the family ηb, b ∈ B, is relatively compact in H2.

The second part follows by treating the family χaij as a family in Ck,λ. We view Na as a
map from Ck+2,λ⊕Rn to Ck,λ⊕Rn and χaij as the inverse image of (−1

2
∂F
∂a

(
a, φa

)
xixj , 0).

4 Existence principles

We formulate here the abstract existence principles that we shall use. The following is
essentially taken from [2].

Theorem 9. Let E and F be real Banach spaces, and let f : R+×E → F and let x0 ∈ E.
Assume that

(1) f(ε, ·) is C2 for each ε ≥ 0;

(2) limε→0+ f(ε, x0) = 0;

(3) for all sufficiently small ε > 0 the operator Dxf(ε, x0) is invertible and ||Dxf(ε, x0)−1||
is uniformly bounded as ε→ 0+;

(4) D2
xf(ε, x) is bounded in the operator norm given that ε is bounded above and x is
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restricted to a bounded subset of E.

Then there exist ε0 > 0 and a neighbourhood U of x0 in E such that for each ε in the
range 0 < ε < ε0 there exists a unique solution x = xε of f(ε, x) = 0 in U . Moreover
limε→0 xε = x0.

If, furthermore, f(ε, x) is a continuous function of ε for ε > 0 and for all x in a
neighbourhood of x0, and the map ε 7→ Dxf(ε, x0) is continuous in the strong operator
topology, then the solution xε depends continuously on ε.

The following essentially trivial result will be repeatedly invoked at key places (Wang’s
lemma [2]).

Lemma 10. Let fν be a family of measurable functions such that

0 < δ < fν(x) < K

for all ν and constants δ and K. Let µν be a sequence of non-negative numbers and let
vν be a sequence in H2 such that

−∆vν + (fν(x) + µν)vν → 0

in L2. Then vν → 0 in H2.

5 Single bump solutions

In this section we construct a family of single bump solutions, with some uniformity
properties that can be expressed in H2. Recall the family of functions ηb defined in
section 3 as the unique solution to (3) orthogonal to the partial derivatives DjφV (b).

Theorem 11. Assume all the conditions listed in section 2. Let B be a collection of
non-degenerate critical points of V . Assume that:

(1) the set of values V (b), b ∈ B, has compact closure in I;

(2) the collection of symmetric matrices D2V (b), b ∈ B, has the property |detD2V (b)| > h
where h > 0 and is independent of b ∈ B.

Then there exists ε0 and a family of numbers rε > 0 such that limε→0+ rε = 0, and for
0 < ε < ε0 and each b ∈ B the problem

−∆u+ F (V (εx), u) = 0

has a unique solution ubε ∈ H2 having the form

ubε(x) = φV (b)

(
x− b

ε
+ sbε

)
+ ε2wbε

(
x− b

ε
+ sbε

)
11



where sbε ∈ Rn, the function wbε is orthogonal to the partial derivatives DjφV (b), and
|sbε|+ ||wbε − ηb||H2 < rε.

Finally the family of maps ε 7→ (sbε, w
b
ε), b ∈ B, from ]0, ε0[ to Rn×H2 is equicontinuous.

Proof. For each a ∈ I let

W a =
{
w ∈ H2 :

∫
wDjφa dx = 0, j = 1, . . . , n

}
.

We seek a solution of the form

u(x) = φa

(
x− b

ε
+ s
)

+ ε2w
(
x− b

ε
+ s
)
,

where b ∈ B, a = V (b), s ∈ Rn and w ∈W a. It is sometimes convenient to write this as

u(x) = φa(x− ξ) + ε2w(x− ξ)

where ξ = b
ε − s. Substituting into the problem, using −4φa(x) + F (a, φa(x)) = 0 and

replacing x by x+ ξ we obtain

−ε24w − F (a, φa) + F
(
V (ε(x+ ξ)), φa + ε2w

)
= 0,

Dividing by ε2 we form the rescaled equation

−4w + ε−2
[
F
(
V (ε(x+ ξ)), φa + ε2w

)
− F

(
a, φa

)]
= 0. (4)

This problem can be considered an operator equation

Γbε(s, w) = 0 (5)

where Γbε : Rn ×W a → L2. As usual we use the convention a = V (b).
Essentially we shall solve (5) for small ε uniformly for b ∈ B. To see what this entails

expand (4) into

−4w + ε−2
[
F
(
V (ε(x+ ξ)), φa + ε2w

)
− F

(
V (ε(x+ ξ)), φa

)]
+ ε−2

[
F
(
V (ε(x+ ξ)), φa

)
− F

(
a, φa

)]
= 0. (6)

and for each b ∈ B consider the (non-rigorous) limit as ε→ 0

−4w +
∂F

∂u

(
a, φa

)
w +

1
2
∂F

∂a

(
a, φa

)(
D2V (b)(x− s) · (x− s)

)
= 0 (7)

which has the unique solution s = 0, w = ηb.
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We now claim:

(1) Γbε(0, η
b)→ 0 in L2 as ε→ 0, uniformly with respect to b ∈ B.

(2) DΓbε(0, η
b) is an invertible, surjective, linear operator from Rn ×W a to L2 and its

inverse is uniformly bounded in the operator norm with respect to a range of values of ε
of the form 0 < ε < ε1 and all b ∈ B.

(3) D2Γbε(s, w) and D3Γbε(s, w) are uniformly bounded in norm given a uniform bound for
the norm of (s, w), an upper bound for ε and no restriction on b ∈ B.

All our conclusions except the last one follow from these claims by means of theorem
9 together with a simple device. Let E denote the subspace of the cartesian product
Πb∈B(Rn × W V (b)) consisting of those families (sb, wb)b∈B that are uniformly bounded
with respect to b ∈ B. We impose the norm ||(sb, wb)b∈B|| = supb∈B

(
|sb| + ||wb||

)
. In

effect E is just an l∞ space of sequences indexed by B where the bth coordinate of each
sequence lies in Rn×W V (b). We also introduce the space F of bounded families of elements
of L2 indexed by B. Then we define an operator ΓBε : E → F by

ΓBε ((sb, wb)b∈B) = (Γbε(s
b, wb))b∈B.

We will apply theorem 9 to solve the operator equation

ΓBε ((sb, wb)b∈B) = 0 (8)

By claim (3) ΓBε is C2 and the second derivative D2ΓBε ((sb, wb)b∈B) is uniformly bounded
given that (sb, wb)b∈B is restricted to a bounded subset of E and an upper bound placed on
ε. By lemma 8 the family (0, ηb)b∈B belongs to E. By claim (1) limε→0 ΓBε ((0, ηb)b∈B) = 0
and by claim (2) the operator DΓBε ((0, ηb)b∈B) is invertible for all sufficiently small ε and
its inverse is bounded in norm as ε → 0. All the conclusions of the theorem except the
last now follow from theorem 9.

Now to proving the claims (1), (2) and (3).
Claim (1) follows by expressing the difference between (6) and (7) as integrals, using the

boundedness properties of the Nemitski-operators induced by the derivatives of F together
with the facts that the family φa has uniform exponential decay for a = V (b) ∈ V (B),
that B consists of critical points of V and ηb is uniformly bounded in H2 for b ∈ B (lemma
8).

Claim (3) follows, much as in the case of claim (1), by expressing the left-hand side of
(4) by integrals to eliminate negative powers of ε.

To prove claim (2) we note first that DΓbε(0, η
b) is a Fredholm operator of index 0

as it is a compact perturbation of the invertible operator −∆ + ∂F
∂u (a, 0). It is sufficient

therefore to prove the following.

(4) Let bν be a sequence in B, let aν = V (bν), let εν → 0 and let (σν , vν) ∈ Rn×W aν sat-
isfy |σν |+ ||vν ||H2 ≤ 1 and ||DΓbνεν (0, ηbν )(σν , vν)||L2 → 0. Then a subsequence of (σν , vν)
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tends to 0 in Rn ×H2.

Given the sequences in the first sentence of claim (4) we may assume, going to a sub-
sequence, that aν → a0 ∈ I (by condition (1) of the theorem), σν → σ0 ∈ Rn and
vν → v0 weakly in H2. Moreover we may assume, by condition (2) of the theorem, that
D2V (bν) converges to a symmetric matrix A0 which will be invertible. By assumption
(Φ2) φaν → φa0 in H2.

The relation ||DΓbνεν (0, ηbν )(σν , vν)|| → 0 expands into

−4vν +
∂F

∂u

(
V (ενx+ bν), φaν + ε2

νη
bν
)
vν

− ε−1
ν

(
∂F

∂a

(
V (ενx+ bν), φaν + ε2

νη
bν
)
− ∂F

∂a

(
V (ενx+ bν), φaν

))
∇V (ενx+ bν) · σν

− ε−1
ν

∂F

∂a

(
V (ενx+ bν), φaν

)
∇V (ενx+ bν) · σν → 0. (9)

Proceeding to the limit we find that the following equation is satisfied in the distribution
sense:

−∆v0 +
∂F

∂u

(
a0, φa0

)
v0 −

∂F

∂a

(
a0, φa0

)
A0x · σ0 = 0 (10)

As in the previous paper [2] the invertibility of A0 and the non-vanishing of the integral
(assumption (Φ5)) imply that σ0 = 0. We also know that∫

vνDjφaν dx = 0, j = 1, . . . , n

for each ν; so going to the limit gives∫
v0Djφa0 dx = 0, j = 1, . . . , n

so that we deduce from (10) that v0 = 0. We therefore deduce from (9) that

−4vν +
∂F

∂u

(
V (ενx+ bν), φaν + ε2

νη
bν
)
vν → 0 (11)

As in the previous paper ([2], lemma 3.5(i)) this implies that

−4vν +
∂F

∂u

(
V (ενx+ bν), 0

)
vν → 0 (12)

which combined with lemma 10 gives vν → 0 in H2. This proves claim (4).
Finally we consider the equicontinuity of the family of maps ε 7→ (sbε, w

b
ε), b ∈ B. We

wish to apply the last claim of theorem 9. The hard part is continuity with respect to the
strong operator topology; we have to show that the map

ε 7→ DΓBε
(
(0, ηb)b∈B

)
(σb, vb)b∈B

14



is continuous from ]0, ε0[ to the space F , where (σb, vb)b∈B is a fixed element of E. This
amounts to showing that the family of maps

ε 7→ DΓbε(0, η
b)(σb, vb), b ∈ B

is equicontinuous. Unfortunately this cannot be true. Let us expand this mapping into

ε 7→ −4vb +
∂F

∂u

(
V (εx+ b), φV (b) + ε2ηb

)
vb

− ε−1∂F

∂a

(
V (εx+ b), φV (b) + ε2ηb

)
∇V (εx+ b) · σb (13)

The problem is that the second term cannot be equicontinuous as a function of ε for
arbitrary bounded families vb since the limit

lim
ε→ε1

∂F

∂u

(
V (εx+ b), φV (b) + ε2ηb

)
is not uniform with respect to x. In fact it is because of this problem that we could not
apply the normal implicit function theorem to obtain solutions of (8).

The solution is to modify the device used in the preceding proof. Recall that the
family (sbε, w

b
ε)b∈B is the unique solution of the operator equation ΓBε ((sb, wb)b∈B) = 0

near to the family (0, ηb)b∈B. Here ΓBε acts in the space E of uniformly bounded families
of the form (sb, wb)b∈B with wb ∈ W V (b) and its codomain is the space F of uniformly
bounded families (f b)b∈B in L2. The idea is to replace the defining property of uniform
boundedness with the more restrictive property that the families are relatively compact.
This replaces the spaces E and F by the closed subspaces E0 and F0 of relatively compact
families. Since we already know by lemma 8 that the family ηb is relatively compact in
H2, and hence also that (0, ηb)b∈B ∈ E0, we can conclude that the family (sbε, w

b
ε)b∈B ∈ E0

if we can carry out the existence argument using E0 and F0 instead of E and F .
Now it is simple to show that (13) defines an equicontinuous family when the family

vb, b ∈ B, is relatively compact in L2 instead of being merely bounded and hence we
obtain the final claim of the theorem.

The remaining two tasks are to show

(1) ΓBε maps E0 into F0;

(2) DΓBε ((0, ηb)b∈B) is surjective when viewed as a linear map from E0 to F0.

Proof of (1). This requires showing that, given a sequence bν ∈ B, if wν := wbν ∈W V (bν)

is convergent in H2 and sν := sbν is convergent in Rn, then the sequence

fν = −4wν + ε−2
[
F
(
V (ε(x− sν) + bν), φV (bν) + ε2wν

)
− F

(
V (bν), φV (bν)

)]
has a convergent subsequence in L2. This is obtained by choosing a subsequence along
which V (bν) is convergent and the sequence V (ε(· − sν) + bν) is convergent in Cloc.
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Proof of (2). We refer to the formula for the derivative DΓBε ((0, ηb)b∈B). It suffices to show
the following. Let (f b)b∈B ∈ F . We know that there is a unique family (σb, vb)b∈B ∈ E
such that

DΓBε ((0, ηb)b∈B)(σb, vb)b∈B = (f b)b∈B

The problem is to show that if (f b)b∈B ∈ F0 then (σb, vb)b∈B ∈ E0. This amounts to
showing the following. Given a sequence bν ∈ B and a sequence fν ∈ L2 that is convergent
to f , let (σν , vν) be the unique solution in Rn ×W V (bν) to

−4vν +
∂F

∂u

(
V (εx+ bν), φaν + ε2ηbν

)
vν

− ε−1∂F

∂a

(
V (εx+ bν), φaν + ε2ηbν

)
∇V (εx+ bν) · σν = fν . (14)

We wish to show that (σν , vν) has a convergent subsequence in Rn ×H2. By going to a
subsequence we may assume that σν → σ, aν → a, V (ε(·) + bν) → h in C1

loc, η
bν → η in

H2 and vν is weakly convergent in H2 to a function v. Going to the limit we deduce

−4v +
∂F

∂u

(
h, φa + ε2η

)
v − ε−1∂F

∂a

(
h, φa + ε2η

)
∇h · σ = f. (15)

By the convergence lemmas of [2] we deduce

−∆(vν − v) +
∂F

∂u

(
V (εx+ bν), 0

)
(vν − v)→ 0

in L2. Now lemma 10 implies that vν → v in H2.
This ends the proof of theorem 11.

It might be asked why we did not carry out the proof of theorem 11 directly in
Hölder spaces instead of in Sobolev spaces. This would have obviated the need for growth
conditions and granted some of the regularity to be proved in the next section. Against
this one can counter the following. Firstly growth conditions are needed anyway to ensure
the existence of the ground state, which is usually found by solving an extremal problem
in H1. Secondly our proof follows closely the proof of theorem 3.8 of [2]. Thirdly the
finiteness of Sobolev norms (read energy) is a desirable conclusion in itself when it is
appropriate as is certainly the case for single bump solutions.

6 Regularity and decay estimates

In this section we give a long list of results whose purpose is to prepare for the glueing
together of the solutions ubε obtained in theorem 11 into new solutions. Since B may
be infinite this process cannot be carried out in H2 and instead we must use spaces of
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classically differentiable functions with global bounds and Hölder conditions. This was
studied in a previous paper [4] so that it is only necessary here to show that the solutions
ubε have the regularity and uniform decay properties listed in [4].

In the previous paper [4] the authors gave an example in which V was periodic. Then
essentially φa and wbε were independent of b (or had finitely many values only as b varies).
The uniformity needed was then trivially obtained.

The next objective is the regularity and uniform exponential decay of the single bump
solutions ubε. The crucial result needed to get the uniformity is the relative compactness
of the family wbε in H2. Throughout this section we refer to the number ε0 introduced in
theorem 11.

Lemma 12. Let B satisfy the conditions of theorem 11 and let 0 < ε1 < ε0. Then the
family wbε, 0 < ε < ε1, b ∈ B, is relatively compact in H2.

Proof. The family (wbε)b∈B is relatively compact at fixed ε by the proof of theorem 11. Now
we allow ε to move and use equicontinuity of the map ε 7→ wbε as proved in theorem 11.

Theorem 13. Let B satisfy the conditions of theorem 11 and let 0 < λ < 1. Then the
solutions ubε are C∞ and decay at infinity. If 0 < ε1 < ε0 then the family ubε, 0 < ε < ε1,
b ∈ B, is bounded in C4,λ.

Proof. Since V and F are C∞ it follows that ubε is C∞. Since V has bounded derivatives
up to order 3 then, from the equation

−∆ubε + F (V (εx), ubε) = 0

we see by theorem 3 that ubε ∈ C4,λ. To get a uniform bound on the norm using theorem
3 we must have a uniform bound in H2. This requires a uniform bound on the H2 norm
of φa for a ∈ V (B) and a uniform bound on ||wbε||H2 . The former follows from assumption
(Φ2); the latter from lemma 12.

Theorem 14. Let B satisfy the conditions of theorem 11 and let 0 < λ < 1. If 0 < ε1 < ε0

then the family wbε is uniformly bounded in C2,λ for 0 < ε < ε1 and b ∈ B.

Proof. Note that we already have by the last theorem and the asymptotic formula for ubε
that wbε is in C4,λ and that a uniform bound exists on the C4,λ norm of ε2wbε. However
there is no reason to suppose in advance that a bound exists on any Ck,λ-norm of wbε
independent of ε, except that obtained from the Sobolev embedding of H2 into Ck,λ,
which gives a result only for n = 1, 2 and 3, and a much poorer one than the conclusion
of this theorem.

We approach the question by viewing wbε as a solution to a semilinear equation. We
know that

∆wbε = ε−2
[
F (V (b+ ε(x− sbε)), φa + ε2wbε)− F (a, φa)

]
17



where, as usual a = V (b). Write the right-hand side as Ibε(x) + Jbε(x) where

Ibε(x) = ε−2
[
F (V (b+ ε(x− sbε)), φa + ε2wbε)− F (V (b+ ε(x− sbε)), φa)

]
=

∫ 1

0

∂F

∂u

(
V (b+ ε(x− sbε)), φa + tε2wbε

)
wbε dt

and

Jbε(x) = ε−2
[
F (V (b+ ε(x− sbε)), φa)− F (a, φa)

]
=

∫ 1

0

∫ 1

0

∂F

∂a

(
V (b+ t1ε(x− sbε)), φa

)
H
(
b+ t1t2ε(x− sbε)

)
(x− sbε) · (x− sbε)t1 dt1dt2

Now we know that φa + tε2wbε is uniformly bounded in C0 with respect to b ∈ B and
0 < ε < ε1. Also V is bounded. Hence

|Ibε(x)| ≤ C|wbε(x)|

where C is independent of ε < ε1 and b ∈ B.
Turning to Jbε we know by assumptions (F1), (V2) and theorem 4 that the family

∂F
∂a (V (b + t1ε(x − sbε)), φa) has uniform exponential decay w.r.t. b ∈ B, ε < ε0 and
t1 ∈ ]0, 1[. The Hessian matrix H of V is bounded, and the family sbε is bounded for
0 < ε < ε1 and b ∈ B. Hence there exists C > 0, independent of b ∈ B and ε < ε1, such
that |Jbε(x)| ≤ C, and also ||Jbε ||L2 ≤ C, and hence ||Jbε ||Lp ≤ C for 2 ≤ p ≤ ∞.

Now we can perform a bootstrap starting with wbε ∈W 2,2, since if wbε ∈W 2,r for some
r in the range 2 ≤ r < n/2 and ||wbε||W 2,r ≤ D with D independent of ε and b we find

||∆wbε||L nr
n−2r

≤ ||Ibε ||L nr
n−2r

+ ||Jbε ||L nr
n−2r

≤ C
(
||wbε||L nr

n−2r
+ 1
)

and the Calderon-Zygmund estimate gives that ||wbε||W 2, nr
n−2r

has a finite bound indepen-
dent of ε and b. Applying the bootstrap leads in a finite number of steps to

||wbε||L∞ ≤ C

for a (new) constant C independent of ε < ε1 and b. (Note that for n = 1, 2, 3 or 4 the
bootstrap is unnecessary and we have this conclusion at once.) Because of

|∆wbε(x)| ≤ C(|wbε(x)|+ 1)

we get immediately that ||wbε||C1,λ has a uniform bound. To make further progress we
must estimate the first derivatives of Ibε(x) and Jbε(x). As V has bounded derivatives to
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order three, Dφa decays exponentially and uniformly and, as we have just seen, wbε has
bounded first derivatives, all bounds being independent of ε < ε1 and b, we see that ∆wbε
has its first derivatives bounded independently of ε < ε1 and b. Thus we arrive at a
uniform bound on ||wbε||C2,λ .

Note that under the stronger assumption that V is periodic, so that all its derivatives
are bounded, we can obtain stronger results; for example the families ubε and wbε are then
bounded in Ck for all k.

Theorem 15. Let B satisfy the conditions of theorem 11. Then ubε
(
x+ b

ε − s
b
ε

)
converges

in C2,λ to φa as ε→ 0. The convergence is uniform with respect to b.

Proof. This is an immediate consequence of theorem 14.

Theorem 16. Let B satisfy the conditions of theorem 11. Then wbε → ηb in C2 as ε→ 0,
uniformly with respect to b.

Proof. Let ε1 < ε0. The family wbε, 0 < ε < ε1, b ∈ B is bounded in C2,λ. The same is
true of the family ηb, b ∈ B. Hence it is also true of the family wbε−ηb, 0 < ε < ε1, b ∈ B.
It follows that the functions

Dα(wbε − ηb), 0 < ε < ε1, b ∈ B, |α| ≤ 2

form a uniformly equicontinuous family. If the claim of the theorem is false then we can
find a multiindex α with |α| ≤ 2, sequences εν → 0, xν ∈ Rn, bν ∈ B and a number δ > 0
such that

|Dα(wbνεν (xν)− ηbν (xν))| > δ

By uniform equicontinuity there exists r > 0, independent of ν, such that

|Dα(wbνεν (y)− ηbν (y))| > δ

2

whenever |y − xν | < r. But this contradicts the fact that wbε → ηb in H2 uniformly with
respect to b ∈ B as follows from theorem 11.

Theorem 17. Let B satisfy the conditions of theorem 11 and let 0 < ε1 < ε0. Then the
family wbε, 0 < ε < ε1, b ∈ B, decays uniformly at infinity.

Proof. As shown above the family is relatively compact in H2, hence also in L2. It follows
that the limit

lim
R→∞

∫
|x|>R

(wbε)
2 dx = 0
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is attained uniformly with respect to ε and b. It is moreover a bounded family in C2,
hence uniformly equicontinuous, and individual members decay at infinity. The uniform
decay now follows by the same kind of argument as we used for the uniform decay of
φa.

Theorem 18. Let B satisfy the conditions of theorem 11 and let ε1 < ε0. Let 0 < µ <√
δ (where δ is defined in the positivity assumption on F ). Then there exists C > 0

independent of ε < ε1 and b ∈ B, such that∣∣∣∣ubε(x+
b

ε
− sbε

)∣∣∣∣ < Ce−µ|x|.

Similar estimates hold for the derivatives of ubε up to and including order 3.

Note: Obviously we may drop the vector sbε from the estimate.

Proof. The function v(x) := ubε
(
x+ b

ε − s
b
ε

)
satisfies a linear equation

−∆v +Gbε(x)v = 0

where

Gbε(x) =
∫ 1

0

∂F

∂u

(
V (ε(x− sbε) + b), tφa(x) + tε2wbε(x)

)
dx

We can write

Gbε(x) =
∂F

∂u
(V (ε(x− sbε) + b), 0)

+ φa(x)
∫ 1

0

∫ 1

0

∂2F

∂u2
(V (ε(x− sbε) + b), t1t2φa(x))t1 dt1 dt2

+ ε2wbε(x)
∫ 1

0

∫ 1

0

∂2F

∂u2
(V (ε(x− sbε) + b), t1φa(x) + t1t2ε

2wbε(x))t1 dt1 dt2

(16)

The first term is higher than δ > 0 independently of x, ε and b. The second and third
decay at infinity uniformly with respect to ε < ε1 and b by theorems 17 and theorem 4
and the boundedness lemmas. We therefore see that

lim inf
|x|→∞

Gbε(x) ≥ δ

uniformly with respect to ε and b. Since we already know that v(x) decays at infinity we
see, by [5], that there exists a constant C independent of ε and b, such that∣∣∣∣ubε(x+

b

ε
− sbε

)∣∣∣∣ ≤ C||ubε||L∞e−µ|x|
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Since we already have a uniform bound on ||ubε||L∞ the theorem is proved.

We conclude this section by proving the uniform positivity of ubε given that φa > 0.

Theorem 19. Make the same assumptions as in theorem 11 and in addition assume that
φa > 0 for all a ∈ I. Then there exists ε1 ∈ ]0, ε0[ such that ubε > 0 for 0 < ε < ε1 and all
b ∈ B.

Proof. The function ubε satisfies −∆ubε + F (V (εx), ubε) = 0 which we write in the form

−∆ubε + gbε(x)ubε = 0

where

gbε(x) =
∫ 1

0

∂F

∂u
(V (εx), tubε) dt.

By theorem 15 we know that

ubε

(
·+b

ε
− sbε

)
→ φV (b)

uniformly with respect to b ∈ B. We are assuming that φa > 0. Hence there exists ε1 such
that if 0 < ε < ε1 and x is such that ubε(x) < 0 then gbε(x) > δ/2 where δ was introduced
in property (P1). Moreover ε1 is independent of b ∈ B. From this we deduce that ubε > 0
if 0 < ε < ε1 and b ∈ B, using exactly the same arguments as in [4, theorem 18].

7 Infinite bump solutions

Everything is now in place to give the two main conclusions of this paper. The proof of
the first is a direct application of [4] using the regularity and uniformity properties of the
last section. Note that these are not all required at the strength obtained; for example we
only need to know that wbε is uniformly bounded in C1 (we have C2,λ) and that wbε → ηb in
Cλloc uniformly with respect to b (it converges in the C2(Rn)-norm uniformly with respect
to b). The application of [4] may require some strengthening of the regularity of V as we
now see.

Theorem 20. Make the same assumptions as in theorem 11, but assume in addition that
the derivatives of V are bounded up to order max(3, 2 + n

2 ). Let 0 < λ < 1. Then there
exists ε1 > 0 such that if 0 < ε < ε1 and B0 ⊂ B there exists a unique solution UB0

ε of
the equation −∆u+ F (V (εx), u) = 0 such that∥∥∥UB0

ε −
∑
b∈B0

ubε

∥∥∥
C2,λ
≤ Ce−σ/ε

where C and σ are positive constants independent of B0 and ε.
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Note that as was shown in [4] the series
∑

b∈B0
ubε converges in C3

loc to a function in
C3(Rn).

The second main conclusion follows from [4] and theorem 19.

Theorem 21. Under the same conditions as in theorem 20, if the solutions ubε are strictly
positive, so is the solution UB0

ε . In particular if the ground state φa is strictly positive for
all a ∈ I then there exists ε2 such that UB0

ε > 0 whenever 0 < ε < ε2 and B0 ⊂ B.

8 Examples

The main difficulty in obtaining examples in dimensions n ≥ 2 is the existence of the
ground state with the required properties. There is clearly an abundance of functions
V with infinitely many critical points that satisfy the required conditions and are not
periodic. For example we can take V to be almost periodic. Or else V could be a periodic
function multiplied by a bounded function, or the composition of a periodic function with
a diffeomorphism of Rn onto itself. We shall explicitly exhibit some examples of the set
B in cases when V is not periodic.

The ground state
Let p be an integer satisfying 1 < p < n+2

n−2 . Our starting point is the ground state solution
ψ(x) of

−∆u+ u− up = 0

By ground state we mean here the non-trivial, radially symmetric solution of least energy.
This is known to have all the required properties of exponential decay and quasi-non-
degeneracy (see references [1], [7]). We generate the following two cases:

Case 1:
φa(x) := a

1
p−1ψ(a

1
2x), (a > 0)

is a solution of
−∆u+ au− up = 0

Case 2:
φa(x) := a

1
1−pψ(x), (a > 0)

is a solution of
−∆u+ u− aup = 0

It is clear that in both cases φa(x) satisfies the conditions (Φ1–4). We can now obtain
conclusions for the two problems:

−ε2∆u+ V (x)u− up = 0

−ε2∆u+ u− V (x)up = 0
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For the first problem the positivity condition requires V to have its range in the interval
]δ,∞[, where δ > 0. For the second problem the positivity condition is automatically
satisfied but we must have V (x) > 0 as the ground state exists for a > 0.

In the one-dimensional case there is much more scope for constructing ground states
with the required properties. We can study the problem

−ε2u′′ + F (V (x), u) = 0

where, for a range of values of a ∈ I, we assume F (a, 0) = 0, ∂F∂u (a, 0) > 0, and G(a, u) :=
−
∫ u

0 F (a, s) ds satisfies supu>0G(a, u) > 0. Then the solution φa is a ground state where
the curve x 7→ (φa(x), φ′a(x)) is the phase-plane trajectory in the region u > 0 that tends
to the saddle point (0, 0) as |x| → ∞ and is such that φa is an even function.

More precisely let u = r(a) be the lowest positive zero of G(a, u). Then φa is the
solution of −u′′ + F (a, u) = 0 that satisfies the Cauchy conditions u(0) = r(a), u′(0) = 0.
If we make the natural assumption that r(a) is a smooth function of a ∈ I then φa(x) will
be a smooth function of a. Noting that φa satisfies 1

2φ
′
a(x)2 +G(a, φa(x)) = 0 and using

the assumption that ∂F
∂u (a, 0) > 0 one can easily deduce from this the exponential decay

of φa and its derivatives at x = ±∞ and that the decay is uniform with respect to a if
the latter is restricted to a compact subset of I. This also gives the continuity of a 7→ φa
from I to H2. That φa is quasi-non-degenerate follows by observing that the Wronskian
of a solution base of −v′′ + ∂F

∂u (a, φa(x))v = 0 is a non-zero constant so that one cannot
have two linearly independent solutions that decay at ±∞.

It is interesting to study the condition (Φ4) in this context. A short calculation shows
that (Φ4) is equivalent to ∫ r(a)

0
|G(a, u)|−

1
2
∂G

∂a
(a, u) du 6= 0.

This is, for example, satisfied if ∂G
∂a (a, u) is of one sign in the interval ]0, r(a)[.

Instances of the set B
We shall give some explicit examples of the set B in non-periodic cases based on some
quite elementary calculations. For definiteness consider the problem

−ε2u′′ + u− V (x)u3 = 0, −∞ < x <∞

where the existence of the ground state requires V (x) > 0.
We look first at a couple of cases where V (x) is almost periodic. As a first example

let
V (x) = 2 + sinx+ sin

√
10x.

We can let B consist of the set of all critical points. They are the solutions of

cosx+
√

10 cos
√

10x = 0
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which is obviously an infinite set. Now we have for x ∈ B

|V ′′(x)| =
∣∣∣sinx+ 10 sin

√
10x
∣∣∣ =

∣∣∣∣∣sinx± 10

√
1− cos2 x

10

∣∣∣∣∣ > 8.

We modify the first example and let

V (x) = 2 + sinx+
1√
10

sin
√

10x.

The critical points of V consist of the two arithmetic progressions

(2m+ 1)π√
10 + 1

,
(2n+ 1)π√

10− 1
, m, n ∈ Z

These are disjoint from each other and do not together form an arithmetic progression.
However in this case we cannot choose for B the set of all critical points; it is clear that
the distance between consecutive critical points has infimum 0. A short calculation shows
that in order to satisfy condition (2) of theorem 11 we want to choose infinite subsets
M,N ⊂ Z such that the sets

(2m+ 1)√
10 + 1

,
(2n+ 1)√

10− 1
, m ∈M, n ∈ N

are at a positive distance from the set Z. Then we may take

B =
{

(2m+ 1)π√
10 + 1

: m ∈M
}
∪
{

(2n+ 1)π√
10− 1

: n ∈ N
}

To construct M we proceed as follows. Corresponding to each open interval k(
√

10+1) <
x < (k + 1)(

√
10 + 1) place in M the integer j where 2j + 1 is the odd integer in the

interval lying furthest from the endpoints. For N we proceed similarly using the intervals
k(
√

10−1) < x < (k+1)(
√

10−1). We used
√

10 here to ensure that each of both batches of
intervals would always contain at least one odd integer. Obviously any irrational number
λ could replace

√
10 but this simple prescription for B works when λ2 > 3.

Our third example is
V (x) = eG(x) cosx+ C

where G(x) has all derivatives bounded, and G′ and G′′ are small enough. We take for B
the set of all critical points. They are roots of

tanx = G′(x)

which are clearly infinitely many. Now for x ∈ B we have

V ′′(x) = eG(x) cosx(G′′(x)−G′(x)2 − 1).
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We therefore obtain an inequality |V ′′(x)| > δ > 0 for all x ∈ B if, for example, |G′′(x)−
G′(x)2| < α < 1 for all x. Note that cosx stays away from 0 because tanx is bounded
above in B.

Another source of oscillating but non-periodic functions arises from solving second
order linear differential equations. For example let V (x) = y(x) + C where y(x) is a
non-trivial solution of

y′′ +
(

1 +
1

1 + x2

)
y = 0

and C is chosen to make V (x) positive. The solutions are oscillating (have infinitely many
zeros and critical points) by Sturmian theory and are bounded, in fact they approach
solutions of y′′ + y = 0 at ∞ and −∞. The latter follows by standard arguments using
the fact that 1/(1 +x2) is integrable at infinity. Since the Wronskian of two solutions is a
constant it is easy to check that y′′(x) stays away from 0 at critical points of y(x) so that
we can take as B the set of all critical points.

A more explicit example of this kind is V (x) = xjp(x) +C where jp(x) is the spherical
Bessel function with order equal to the non-negative integer p. The function y(x) = xjp(x)
satisfies the differential equation

y′′ +
(

1− p(p+ 1)
x2

)
y = 0

and up to a constant multiplier it is the unique solution that extends to an entire analytic
function. As in the last example, and by the same argument, we can take as B the set of
all critical points, with the exclusion of x = 0 which is degenerate if p ≥ 1.

An example of a quite different kind is

V (x) = 1 + cos
(
x+

1
x2 + 1

)
.

Now the function y(x) = x + 1
x2+1

is a diffeomorphism of R onto itself and |y′(x)| > 1
2

(rather comfortably). Hence the critical points are the roots of

sin
(
x+

1
x2 + 1

)
= 0

which is to say they are the points bn = y−1(nπ), n ∈ Z; quite easy to compute numerically.
Moreover

|V ′′(bn)| = |y′(bn)| > 1
2

so that we may take as B the set of all critical points bn.
This example generalizes easily to n dimensions as follows. Let f : Rn → R be a

periodic function with critical point set C, all members of which are non-degenerate. We
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suppose that there are only finitely many critical points in each cell of the period lattice
of f . Now consider

V (x) = f(y(x))

where y : Rn → Rn is a diffeomorphism with derivatives bounded to a suitable order and
such that |Dy(x)| > δ > 0 for all x ∈ Rn. Then we may take

B = y−1(C).
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